Humans of Paris 1900: Difference between revisions

From FDHwiki
Jump to navigation Jump to search
Line 37: Line 37:
Data.bnf.fr is the project driven by BnF in order to make the data produced by the BnF more visible on the Web, and federate them within and outside the catalogues. Since Gallica is one of the BnF projects, it is reasonable to assume that a person who has their name in Gallica metadata will have some document or page in data.bnf.fr semantic web. In order to get corresponding pages, we queried metadata though python SPARQL API
Data.bnf.fr is the project driven by BnF in order to make the data produced by the BnF more visible on the Web, and federate them within and outside the catalogues. Since Gallica is one of the BnF projects, it is reasonable to assume that a person who has their name in Gallica metadata will have some document or page in data.bnf.fr semantic web. In order to get corresponding pages, we queried metadata though python SPARQL API
Data.bnf XML schema has three name attributes: foaf:name, foaf:givenName, foaf:famliyName. We  checked how names in <dc:subject> is arranged, compare the arrangement with some names in Data.bnf, rearranged names accordingly, then queried them.
Data.bnf XML schema has three name attributes: foaf:name, foaf:givenName, foaf:famliyName. We  checked how names in <dc:subject> is arranged, compare the arrangement with some names in Data.bnf, rearranged names accordingly, then queried them.


Sometimes query result contained different entities that have the same name. For this case, we exploited the fact that we are handling 19th century data, taken by one author, Nadar. Among the namesakes, we chose the one whose living period overlaps the most with that of Nadar.
Sometimes query result contained different entities that have the same name. For this case, we exploited the fact that we are handling 19th century data, taken by one author, Nadar. Among the namesakes, we chose the one whose living period overlaps the most with that of Nadar.

Revision as of 12:25, 12 December 2019

Motivation

We take inspiration from the famous Instagram page, Humans of New York, which features pictures and stories of people living in current day New York. In similar fashion, our project, Humans of Paris, has the aim to be a platform to connect us to the people of 19th century Paris. Photography was still in its early stages when Nadar took up the craft in his atelier in Paris. Through the thousands of pictures taken by him and his son we can get a glimpse of who lived at the time. We explore the use of deep learning models to cluster similar faces to get an alternative, innovative view of the collection and allowing for serendipitous discovery of patterns and people. There is a story behind every person, and our interface highlights this by association people’s story with their picture.


Historical Background and Nadar's Collection

Implementation

Website Description

In more concrete terms, our project involves four core interfaces motivated by the above.

  • A home page highlighting the most known individuals
  • A page (FaceMap) that highlight similarities in differences in the faces of the people in the dataset.
  • A page to find your 19th century doppelganger, for fun and to gather interest in people the user my otherwise would never have known existed.
  • A way to search using tags, to allow users to find individuals of interest.

To each person in the pictures we associate background information crawled from wikipedia.


Methods & Evaluation

Getting & Processing Metadata

As a first approach, we use the library provided by Raphael to get a list of all the photos in the collection of the foundation Nadar on Gallica. Nadar's collection contains a variety of genres: portraits, comics, caricatures, paysage, sculptures, etc. In order to stick to our emphasis on ‘people of 19th century Paris’, we filtered out photographs that are not directly relevant to people of that time.

  • Getting individual portraits

We used metadata of Gallica collection to filter irrelevant photographs. Among a number of attribute objects in the metadata, we concentrated on ‘dc:subject’ attribute. This field contains a list that has detailed information about the photograph and the entity in that photo: [Names of individuals],(year of birth - year of death) -- [genre of the photograph]. For each row, We ignored subjects that do not have the substring “-- Portraits” and returned the new list of subjects. This way, we can discard the landscape, comics, caricatures, and sculptures. After filtering only ‘Portraits’, we had column of list that varied in length: that is, the number of people featured in photographs differed. Since our intention is to connect ourselves to people of 19th century Paris by presenting story of each Parisien-ne in the photograph, we filtered out the photographs that features more than one person. In order to filter and get insights of people who work in the same field or had the same role we created the concept of tags that helps us to access and query groups of people.

  • First attempt

Gallica ‘dc:subject’ metadata had very brief information on each person - only name, year of birth, and year of death, which are not enough information to sort categorize each person. On the other hand, there is ‘dc:title’ metadata that gives title of each photograph, but they were variance in texts. Moreover, for some photographs, especially ‘Portrait du theatre’, the descriptions were on fictional characters which some performers had represented, not on the performers. As a result, we had to find another dataset to finish this task.

  • Second attempt

Data.bnf.fr is the project driven by BnF in order to make the data produced by the BnF more visible on the Web, and federate them within and outside the catalogues. Since Gallica is one of the BnF projects, it is reasonable to assume that a person who has their name in Gallica metadata will have some document or page in data.bnf.fr semantic web. In order to get corresponding pages, we queried metadata though python SPARQL API Data.bnf XML schema has three name attributes: foaf:name, foaf:givenName, foaf:famliyName. We checked how names in <dc:subject> is arranged, compare the arrangement with some names in Data.bnf, rearranged names accordingly, then queried them.


Sometimes query result contained different entities that have the same name. For this case, we exploited the fact that we are handling 19th century data, taken by one author, Nadar. Among the namesakes, we chose the one whose living period overlaps the most with that of Nadar.

Project execution plan

Milestones

Weekly working plan
Timeframe Task Completion
Week 4
07.11 Understanding Gallica Query Gallica API
Query Gallica API
Week 5
14.10 Start preprocessing images
Choose suitable Wikipedia API
Week 6
21.10 Choose face recognition library
Get facial vectors
Try database design with Docker & Flask
Week 7
28.10 Remove irrelevant backgrounds of images
Extract age and gender from images
Design data model
Extract tags, names, birth and death years out of metadata
Week 8
04.11 Set up database environment
Set up mockup user-interface
Prepare midterm presentation
Week 9
11.11 Get tags, names, birth and death years in ready-to-use format
Handle Wikipedia false positives
Integrate face recognition functionalities into database
Week 10
18.11 Create draft of the website (frontend)
Create FaceMap using D3
Week 11
25.11 Integrate all functionalities
Finalize project website
Week 12
02.12 Write Project report