Main Page: Difference between revisions

From FDHwiki
Jump to navigation Jump to search
 
(604 intermediate revisions by 15 users not shown)
Line 4: Line 4:
Professor: [http://people.epfl.ch/frederic.kaplan Frédéric Kaplan]
Professor: [http://people.epfl.ch/frederic.kaplan Frédéric Kaplan]


Assistants: Vincent Buntinx and Lia Costiner
Assistants: Alexander Rusnak, Tristan Karch, Tommy Bruzzese


Rooms: Wednesday (CMN1113) and Friday (CM1104)
Rooms: Wednesday (CM1110) and Thursday (BC03)
 
==Links==
*[https://www.dropbox.com/scl/fi/j0xoe45dp0km4do41kk9c/FDH_Textbook.pdf?rlkey=mr5hdplu5ai7qts3tk0n4k5a0&dl=0 Textbook]
*[https://www.dropbox.com/scl/fo/tu5waw0623hcp4537lx6u/AKx-eznaH6BRddo1goaF7OE?rlkey=jiewdfpk5ysyv92m1817sk5qc&st=01697apo&dl=0 Slides]
*[https://annuel2.framapad.org/p/fdh Framapad]
*[https://pov-dev.up.railway.app/ Application Parcels of Venice (Dev version)]
*[https://pov.up.railway.app/ Application Parcels of Venice (Stable version)]
*[[Projects]]
* Sources
** [https://www.dropbox.com/scl/fi/oekkk9ts0pnjyiqaezz7m/Toponomastica-Veneziana.pdf?rlkey=wfky7ht9ckxa1w1qo6c69bo98&dl=0 Tassini PDF], [https://www.dropbox.com/scl/fi/lfu8ugk25re333gca65g7/Toponomastica-Veneziana_with_pages_delim.txt?rlkey=fouht7678vs102918hn9fuxs1&dl=0 Tassini OCR]
** [https://www.dropbox.com/scl/fo/netqhm40dyw046withu8q/AJO_CPupJwuLw4Zvg1JF2jc?rlkey=ldswph81gb0n9xgi5qzz1b1i8&dl=0 Guido Commerciale PDF]
** [https://onlinebooks.library.upenn.edu/webbin/metabook?id=sanudodiary Sanudo PDF]
<!--
*[https://conference.timemachine.eu Time Machine Conference 2018]
*[https://cliowire.dhlab.epfl.ch Cliowire]
*[https://www.getpostman.com API Software]
*[https://gallica.bnf.fr/accueil/?mode=desktop Gallica]
*[https://docs.opencv.org/3.1.0/db/d27/tutorial_py_table_of_contents_feature2d.html Feature matching tutorial]
*[[Feature matching code]]
*[https://www.mediawiki.org/wiki/Help:Formatting Wiki Syntax]
*[https://github.com/tootsuite/documentation/blob/master/Using-the-API/API.md API documentation]
*[http://fdh.epfl.ch/peergrading/pg.php peer-grading]
-->


==Summary==
==Summary==


This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities circle of processing and interpretation, from data acquisition to new understandings. The first part of the course presents the technical pipelines for digitising, analysing and modelling written documents (printed and handwritten), maps, photographs and 3d objects and environments. The second part of the course details the principles of the most important algorithms for document processing (layout analysis, deep learning methods), knowledge modelling (semantic web, ontologies, graph databases) generative models and simulation (rule-based inference, deep learning based generation). The third part of the course focuses on platform management from the points of view of data, users and bots. Students will practise the skills they learn directly analysing and interpreting Cultural Datasets from ongoing large-scale research projects (Venice Time Machine, Swiss newspaper archives).
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities circle of processing and interpretation, from data acquisition to new understandings and services. The first part of the course presents the technical pipelines for digitising, analysing and modelling written documents (printed and handwritten), maps, photographs and 3d objects and environments. The second part of the course details the principles of the most important algorithms in particular deep learning approaches (for document analysis and image generation) and  knowledge modelling (semantic web, ontologies, graph databases). The third part of the course focuses on platform management from the points of view of data, users and bots. Students will practise the skills they learn by engaging in a class-wide collective project.


==Plan ==
==Plan ==
=== Part I : Concepts ===
==== Week 1 : What are Digital Humanities? ====
11.09 :
(2h) Welcome and Introduction to the course
* FDH-0 (1h)  Introduction to the course and Digital Humanities, structure of the course. Introduction to Framapad and Slido with a simple exercise. Principle of collective note talking and use in the course. State of the Digital Humanities at EPFL.
12.09 :
(4h) What are Digital Humanities? What is their object of study?
* FDH-1-1 (1h) What Are Digital Humanities :  Digital Humanities, Digital Studies, Humanities Computing and Studies about Digital Culture. Digital Humanism vs. Digital Humanities. Why digital methods tend to dissolve traditional disciplinary frontiers. A focus on practice. Translation issues.
* FDH-1-2 (1h) Digital Humanities as a field : Big Data Digital Humanities vs Small Data Digital Humanities. The 3 circles.  Exercise on relationship between elements in Digital Culture schema.
* FDH-1-3 (2h) Big Data of the Past. Data acceleration regime. Inferred Patterns. Redocumentation. Fictional Spaces.
==== Week 2 :  Patrimonial Capitalism and Commons  ====
18.09 : 
* FDH 1-4 Patrimonial Capitalism (1h) Introduction to the DH circle linking the digitisation of sources, their processing, their analysis, visualisation and the creation of societal value (insight, culture) leading ultimately to the digitisation of new sources. Presentation of some sustainable DH circles (genealogy, image banks). Patrimonial capitalism and the risk of monopolistic companies. Parallelism with the race for sequencing the Human Genome.
* FDH 1-5 The Commons (1h) What are the commons ? What is the public domains ? History and evolution. Copyright overreaching. Frontal collision. Governing with the commons.
19.09 :
* FDH 1-6 Anatomy of a large-scale project (1h) Venice Time Machine. European Time Machine.
* Venice Datasets
=== Part II : Pipelines ===
==== Week 3:  Digitisation  ====
25.09 :
* FDH 1-7 Venice Data presentation (Paul Guhennec)
26.09 :
* (2h) FDH 2-1 Introduction to the Digitization Process. Document digitization as a problem of conversion of dimensions. Digitization is logistic optimization. Alienation. Digitization on demand. FDH 2-2 Document Structure. General presentation of the pipeline. Content and Structure. Circulation. Standards. Open Annotation Data Model. Shared Canvas. IIIF.
* (2h)  Project presentation by prof and TA.
==== Week 4: Writing Systems and Text Encoding  ====
2.10 :
(2h) FDH 2-3 : Writing Systems
3.10 :
- (2h) FDH 2-4 : Text Encoding
* (2h)  [[Projects]] presentations. 5' per project with max 3 slides. Write to Tristan before the course. You can find a group using the [https://annuel2.framapad.org/p/fdh framapad].
==== Week 5: Text Processing and Understanding ====
9.10 :
(2h) FDH 2-5 Text Processing : Diachronic and synchronic analysis. n-grams, TF-IDF, Topic Modeling, Word Space Models and Word embeddings (2h)
10.10 :
(2h) FDH 2-6 Text Understanding : Close, surface, distant and machine reading, Information extraction, Named Entities, Resources, Large-Scale Projects (2h)  Work on Project (2h).
==== Week 6:  Images  ====
16.10 :
(2h) FDH 2-7 : Image systems.
17.10 :
(2h) FDH 2-8 : Image processing  (2h) Work on project.
(FDH 2-9 : Image understanding not done this year)
==== Week Off  ====
23.10 :
No course
24.10 :
No Course
==== Week 7: Maps ====
30.10 :
(2h) FDH-2-10 Map systems
31.10 :
(2h) FDH-2-11 Map processing (Remi Petitpierre and Beatrice Vaienti) presentations
(2h) Work on project
==== Week 8: 3D Models  ====
06.11 :
(2h) FDH-2-12: 3D Models Systems and Encoding
07.11 :
(2h) FDH-2-13: 3D Models Processing : Alex Rusnak Thesis
  (2h)Work on project
=== MidTerm Presentations ===
13.11 :
No course
14.11 Midterm presentations
{|class="wikitable"
! style="text-align:center;"| Time
! Project name
|-
|10:20-10:40
| Group 8
|-
|10:40-11:00
| Group 9
|-
|11:00-11:20
| Group 7
|-
|11:20-11:40
| Group 6
|-
|11:40-12:00
| Group 3
|}
{|class="wikitable"
! style="text-align:center;"| Time
! Project name
|-
|13:15-13:35
|  Group 2
|-
|13:35-13:55
|  Group 5
|-
|13:55-14:15
|  Group 4
|-
|14:15-14:35
|  Group 1
|-
|14:35-14:55
|  Group 10
|}
=== Part III : Knowledge modelling and processing ===


20.09 (2h) Introduction to the course and Digital Humanities, structure of the course. Introduction to Framapad with a simple exercise. Principle of collective note talking and use in the course. State of the Digital Humanities at EPFL, in Switzerland and in Europe. Structuring tensions 1: Digital Humanities, Digital Studies, Humanities Computing and Studies about Digital Culture. Digital Humanism vs. Digital Humanities. Why digital methods tend to dissolve traditional disciplinary frontiers. A focus on practice. Translation issues.
==== Week 9 : Semantic modelling, Rule systems, simulations and parallel worlds  ====


22.09 (4h) (a) Structuring tensions 2: Big Data Digital Humanities vs Small Data Digital Humanities. The 3 circles. 
20.11 :
* Practical session: Introduction to MediaWiki. Creation of the articles by the student followed by peer-review and collective work. DH historical figures: Roberto Busa, H.G. Wells, Paul Otlet, Emmanuel Le Roy Ladurie, Any Warburg, Bettmann, Tim Berners Lee, Jimmy Wales, Elisée Reclus, Albert Khan, Jules Maciet. DH concepts and related :  Distant Reading, Regulated Representations, Pattern, Culturomics, Ubiquitous Scholarship, Gamification, Thick Mapping, Design fiction, New Aesthetics, Skeuomorphism, Digital Aura, Digital Heritage, Attention Economy, Folksonomy, Linguistic Capitalism, Open Access, Redocumentation, Open Hardware, Attention backbone, Opinion Mining, Topic Modelling, Gazetteer, Uberisation, Crowsifting, Copyleft, Onboarding. DH tools: Framapad, MediaWiki, Voyant, OpenRefine, QGIS, Jupyter


27.09 (2h) Introduction to the DH circle of processing and interpretation (acquisition, processing, analysis, visualisation, UX, interpretation). From data acquisition to new understandings. General presentation of the Time Machine pipeline. Principles of Digitisation campaign planning. Management of uncertainty, incoherence and errors. Iconographic principle of precaution. Right to be forgotten.
- (1h) FDH-3-0 Summary of the concept viewed so far and introduction to part 3


29.09 (4h) Introduction to Python and bot writing (Vincent). Interfaces for MediaWiki and [[ClioWire]] (the platform we will develop during the semester)
- (1h) FDH-3-1 Semantic modelling. RDF, Metaknowledge


=== Part I : Pipelines ===
21.11 :


04.10 (2h) Pipeline for Written documents (Printed and Handwritten). Scanning techniques for books and documents. Principles of Transcription. Transcription tools. Canvas concept. One canvas multiple images, one image multiple canvas. Short introduction to IIIF. Named Entities, Semantic modelling,Topic and Document modelling.
(2h) FDH 3-2 Universal Ontologies


06.10 (4h) (a) Presentation of the main databases used in the course. Presentation of the group projects. (b) IIIF and DHCanvas (Orlin). Open Annotation Data Model. Shared Canvas. (c) Transcription of Venetian documents (Maud, Giovanni).
(2h) FDH 3-3 Rule systems, simulations and parallel worlds


11.10 (2h) Pipeline for Maps. Vectorization. Alignment. Homologs Points.


13.10 (4h) (a) QGIS Hands On. Exercise on Venetian cadaster (Bastien, Isabella). (b) Composition of the group and start of the project design.
==== Week 10 : Non conceptual knowledge systems and topological data science  ====


18.10 (2h) Pipeline for Artworks photographs. Image banks and phototarchives. Scanning techniques for photographs. Segmentation. Features detection. Detail search.  
27.11 :


20.10 (4h) (a) Exercises with the Replica database and search engine (Lia, Isabella) (b) Project design continues
(2h) FDH 3-4 Non conceptual knowledge systems


25.10 (2h) Pipeline for 3D spaces. Photogrammety. Diachronic realignment. Multiscale indexation.  
28.11 :


27.10 (4h) (a) Photogrammetric tutorial (Nils) (b) Oral presentation of project design.
(2h) Work on Projects / Publication of Study Guide
(2h) Work on Projects


=== Part II : Algorithms ===
=== Part IV : Platforms ===


01.11 (2h) Algorithms for Document processing : Document analysis and Deep learning methods
==== Week 12 : Data, User and Bot  Management  ====


03.11 (4h) (a) Machine vision tutorial (Benoit, Sofia). Introduction to Jupyter. Deep learning in practice. (b) Project development
4.12 :


08.11 (2h) Algorithms for Knowledge modelling : Semantic web, ontologies, graph database, homologous points, disambiguation.
(2h) Study Guide Discussion


10.11 (4h) (a) Exercise in semantic modelling and inference (Maud) (b) Project development
5.12 :


15.11 (2h) Algorithms for Generative models and simulation : Rule-based inference, Deep learning based generation. Discussion on new regimes of visibility.
(2h) Work on Project


17.11 (4h) (a) Exercise in deep-learning based generation (Benoit, Sofia) (b) Project development
(2h) Work on Project


=== Part III : Platform management ===
==== Course Exam and Project work  ====


22.11 (2h) Data Management  : Computing infrastructure,  Data Management models, Sustainability. Apps. Example of Wikipedia and Europeana.
11.12 In class exam


24.11 (4h) (a) Oral presentation of the state of the project and the data processed (b) Preparation of deployment for testing phase
12.12 Work on project


29.11 (2h) User Management : Representation, Rights, Traceability, Vandalism, Motivation, Negotiation spaces
==== Final Week : Project Presentation ====


01.12 (4h) Testing phase
18.12


06.12 (2h) Bot Management : Versioning. Open source repositories.
-- Due: GitHub repository (10%)


08.12 (4h) Testing phase and report writing
-- Due: Report writing (40%)


13.12 (2h) Report writing
19.12


15.12 (4h) Final project presentation
(4h) Final project presentation (20%)


==References==
{|class="wikitable"
! style="text-align:center;"| Time
! Project Name
|-
| 10:15 - 10:40
| Group 1
|-
| 10:40 - 11:05
| Group 2
|-
| 11:05 - 11:30
| Group 3
|-
| 11:30 - 11:55
| Group 4
|-
| 11:55 - 12:20
| Group 5
|}


=== Key Figures ===
{|class="wikitable"
Identity map (Cardon)
! style="text-align:center;"| Time
! Project Name
|-
| 1:15 - 1:40
| Group 6
|-
| 1:40 - 2:05
| Group 7
|-
| 2:05 - 2:30
| Group 8
|-
| 2:30 - 2:55
| Group 9
|-
| 2:55 - 3:20
| Group 10
|}


Maps for Big Data Digital Humanities (Kaplan)
== Resources ==
*[https://gallica.bnf.fr/accueil/?mode=desktop Gallica]
*[https://docs.opencv.org/3.1.0/db/d27/tutorial_py_table_of_contents_feature2d.html Feature matching tutorial]
*[[Feature matching code]]
*[https://www.mediawiki.org/wiki/Help:Formatting Wiki Syntax]
*[https://annuel2.framapad.org/p/r.664b6addb1d73a5242943f306814e898 Introduction to Rhino and Grasshopper]


Semiotic Triangle (McCloud)
==Assessment and Notation grid ==


Infinite Canvas (McCloud)


Uncanny Valley (Mori)
* (Group work) 2 oral presentations (30%)
** 1 midterm presentation of the project (10%)
** 1 final discussing the project result (20%)
* (Group work) Written deliverables (Wiki writing) (20%)
* (Group work) Quality of the project (30%)
* (Individual work) Exam on Course Content (20%)


=== Databases ===
=== 2 collective oral presentations (30%) ===


(Page to be created indicating characteristics, quantity and copyright)
==== Midterm presenting the project planning  (10%) ====
10' max presentation + 5' questions


Le Temps Archives
Notation grid :
*The presentation contains a planning (4)
* + 0.5 The slides are clear and well presented
* + 0.5 The oral presentation is dynamic and fluid
* + 0.5 The planning is realistic.
* + 0.5 The students answer well to the questions


Cini Photoarchive
==== Final discussing the project result (20%) ====
10-15' for presentation and 5-10' for questions


Venice Time Machine documents
Notation grid :
*The presentation presents the results of the project (4)
* + 0.5 The slides are clear and well presented
* + 0.5 The oral presentation is dynamic and fluid
* + 0.5 The results are well discussed
* + 0.5 The students answer well to the questions


Scans of Acedemic Book and journals about Venice
=== Written deliverables (Wiki writing) (20%) ===


Linked Book
* Project plan and milestones (5%) (>300 words)
* Motivation and description of the deliverables (5%) (>300 words)
* Detailed description of the methods (5%) (>500 words)
* Quality assessment and discussion of limitations  (5%) (>300 words)


==Notation system==
The indicated number of words is a minimal bound. Detailed description can in particular be extended if needed.


Wiki writing (10%)
=== Production  (30%) ===


Project design (20%)
* Quality of the realisation 20%
* Code deliverable on github  10%


Project implementation (20%)


Project testing (20%)
=== Exam on Course Content  (20%) ===


Oral presentations (30%)
* A series of questions on the course to ensure the core concepts are understood.

Latest revision as of 10:48, 17 December 2024

Welcome to the wiki of the course Foundation of Digital Humanities (DH-405).

Contact

Professor: Frédéric Kaplan

Assistants: Alexander Rusnak, Tristan Karch, Tommy Bruzzese

Rooms: Wednesday (CM1110) and Thursday (BC03)

Links

Summary

This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities circle of processing and interpretation, from data acquisition to new understandings and services. The first part of the course presents the technical pipelines for digitising, analysing and modelling written documents (printed and handwritten), maps, photographs and 3d objects and environments. The second part of the course details the principles of the most important algorithms in particular deep learning approaches (for document analysis and image generation) and knowledge modelling (semantic web, ontologies, graph databases). The third part of the course focuses on platform management from the points of view of data, users and bots. Students will practise the skills they learn by engaging in a class-wide collective project.

Plan

Part I : Concepts

Week 1 : What are Digital Humanities?

11.09 :

(2h) Welcome and Introduction to the course

  • FDH-0 (1h) Introduction to the course and Digital Humanities, structure of the course. Introduction to Framapad and Slido with a simple exercise. Principle of collective note talking and use in the course. State of the Digital Humanities at EPFL.

12.09 :

(4h) What are Digital Humanities? What is their object of study?

  • FDH-1-1 (1h) What Are Digital Humanities : Digital Humanities, Digital Studies, Humanities Computing and Studies about Digital Culture. Digital Humanism vs. Digital Humanities. Why digital methods tend to dissolve traditional disciplinary frontiers. A focus on practice. Translation issues.
  • FDH-1-2 (1h) Digital Humanities as a field : Big Data Digital Humanities vs Small Data Digital Humanities. The 3 circles. Exercise on relationship between elements in Digital Culture schema.
  • FDH-1-3 (2h) Big Data of the Past. Data acceleration regime. Inferred Patterns. Redocumentation. Fictional Spaces.

Week 2 : Patrimonial Capitalism and Commons

18.09 :

  • FDH 1-4 Patrimonial Capitalism (1h) Introduction to the DH circle linking the digitisation of sources, their processing, their analysis, visualisation and the creation of societal value (insight, culture) leading ultimately to the digitisation of new sources. Presentation of some sustainable DH circles (genealogy, image banks). Patrimonial capitalism and the risk of monopolistic companies. Parallelism with the race for sequencing the Human Genome.
  • FDH 1-5 The Commons (1h) What are the commons ? What is the public domains ? History and evolution. Copyright overreaching. Frontal collision. Governing with the commons.

19.09 :

  • FDH 1-6 Anatomy of a large-scale project (1h) Venice Time Machine. European Time Machine.
  • Venice Datasets

Part II : Pipelines

Week 3: Digitisation

25.09 :

  • FDH 1-7 Venice Data presentation (Paul Guhennec)

26.09 :

  • (2h) FDH 2-1 Introduction to the Digitization Process. Document digitization as a problem of conversion of dimensions. Digitization is logistic optimization. Alienation. Digitization on demand. FDH 2-2 Document Structure. General presentation of the pipeline. Content and Structure. Circulation. Standards. Open Annotation Data Model. Shared Canvas. IIIF.
  • (2h) Project presentation by prof and TA.

Week 4: Writing Systems and Text Encoding

2.10 :

(2h) FDH 2-3 : Writing Systems

3.10 :

- (2h) FDH 2-4 : Text Encoding

  • (2h) Projects presentations. 5' per project with max 3 slides. Write to Tristan before the course. You can find a group using the framapad.

Week 5: Text Processing and Understanding

9.10 :

(2h) FDH 2-5 Text Processing : Diachronic and synchronic analysis. n-grams, TF-IDF, Topic Modeling, Word Space Models and Word embeddings (2h)

10.10 :

(2h) FDH 2-6 Text Understanding : Close, surface, distant and machine reading, Information extraction, Named Entities, Resources, Large-Scale Projects (2h) Work on Project (2h).

Week 6: Images

16.10 :

(2h) FDH 2-7 : Image systems.

17.10 :

(2h) FDH 2-8 : Image processing (2h) Work on project.

(FDH 2-9 : Image understanding not done this year)


Week Off

23.10 :

No course

24.10 :

No Course

Week 7: Maps

30.10 :

(2h) FDH-2-10 Map systems

31.10 :

(2h) FDH-2-11 Map processing (Remi Petitpierre and Beatrice Vaienti) presentations (2h) Work on project

Week 8: 3D Models

06.11 :

(2h) FDH-2-12: 3D Models Systems and Encoding 07.11 :

(2h) FDH-2-13: 3D Models Processing : Alex Rusnak Thesis

  (2h)Work on project

MidTerm Presentations

13.11 :

No course

14.11 Midterm presentations

Time Project name
10:20-10:40 Group 8
10:40-11:00 Group 9
11:00-11:20 Group 7
11:20-11:40 Group 6
11:40-12:00 Group 3
Time Project name
13:15-13:35 Group 2
13:35-13:55 Group 5
13:55-14:15 Group 4
14:15-14:35 Group 1
14:35-14:55 Group 10

Part III : Knowledge modelling and processing

Week 9 : Semantic modelling, Rule systems, simulations and parallel worlds

20.11 :

- (1h) FDH-3-0 Summary of the concept viewed so far and introduction to part 3

- (1h) FDH-3-1 Semantic modelling. RDF, Metaknowledge

21.11 :

(2h) FDH 3-2 Universal Ontologies

(2h) FDH 3-3 Rule systems, simulations and parallel worlds


Week 10 : Non conceptual knowledge systems and topological data science

27.11 :

(2h) FDH 3-4 Non conceptual knowledge systems

28.11 :

(2h) Work on Projects / Publication of Study Guide (2h) Work on Projects

Part IV : Platforms

Week 12 : Data, User and Bot Management

4.12 :

(2h) Study Guide Discussion

5.12 :

(2h) Work on Project

(2h) Work on Project

Course Exam and Project work

11.12 In class exam

12.12 Work on project

Final Week : Project Presentation

18.12

-- Due: GitHub repository (10%)

-- Due: Report writing (40%)

19.12

(4h) Final project presentation (20%)

Time Project Name
10:15 - 10:40 Group 1
10:40 - 11:05 Group 2
11:05 - 11:30 Group 3
11:30 - 11:55 Group 4
11:55 - 12:20 Group 5
Time Project Name
1:15 - 1:40 Group 6
1:40 - 2:05 Group 7
2:05 - 2:30 Group 8
2:30 - 2:55 Group 9
2:55 - 3:20 Group 10

Resources

Assessment and Notation grid

  • (Group work) 2 oral presentations (30%)
    • 1 midterm presentation of the project (10%)
    • 1 final discussing the project result (20%)
  • (Group work) Written deliverables (Wiki writing) (20%)
  • (Group work) Quality of the project (30%)
  • (Individual work) Exam on Course Content (20%)

2 collective oral presentations (30%)

Midterm presenting the project planning (10%)

10' max presentation + 5' questions

Notation grid :

  • The presentation contains a planning (4)
  • + 0.5 The slides are clear and well presented
  • + 0.5 The oral presentation is dynamic and fluid
  • + 0.5 The planning is realistic.
  • + 0.5 The students answer well to the questions

Final discussing the project result (20%)

10-15' for presentation and 5-10' for questions

Notation grid :

  • The presentation presents the results of the project (4)
  • + 0.5 The slides are clear and well presented
  • + 0.5 The oral presentation is dynamic and fluid
  • + 0.5 The results are well discussed
  • + 0.5 The students answer well to the questions

Written deliverables (Wiki writing) (20%)

  • Project plan and milestones (5%) (>300 words)
  • Motivation and description of the deliverables (5%) (>300 words)
  • Detailed description of the methods (5%) (>500 words)
  • Quality assessment and discussion of limitations (5%) (>300 words)

The indicated number of words is a minimal bound. Detailed description can in particular be extended if needed.

Production (30%)

  • Quality of the realisation 20%
  • Code deliverable on github 10%


Exam on Course Content (20%)

  • A series of questions on the course to ensure the core concepts are understood.