Main Page: Difference between revisions
(→Plan) |
|||
(602 intermediate revisions by 15 users not shown) | |||
Line 4: | Line 4: | ||
Professor: [http://people.epfl.ch/frederic.kaplan Frédéric Kaplan] | Professor: [http://people.epfl.ch/frederic.kaplan Frédéric Kaplan] | ||
Assistants: | Assistants: Alexander Rusnak, Tristan Karch, Tommy Bruzzese | ||
Rooms: Wednesday ( | Rooms: Wednesday (CM1110) and Thursday (BC03) | ||
==Links== | |||
*[https://www.dropbox.com/scl/fi/j0xoe45dp0km4do41kk9c/FDH_Textbook.pdf?rlkey=mr5hdplu5ai7qts3tk0n4k5a0&dl=0 Textbook] | |||
*[https://www.dropbox.com/scl/fo/tu5waw0623hcp4537lx6u/AKx-eznaH6BRddo1goaF7OE?rlkey=jiewdfpk5ysyv92m1817sk5qc&st=01697apo&dl=0 Slides] | |||
*[https://annuel2.framapad.org/p/fdh Framapad] | |||
*[https://pov-dev.up.railway.app/ Application Parcels of Venice (Dev version)] | |||
*[https://pov.up.railway.app/ Application Parcels of Venice (Stable version)] | |||
*[[Projects]] | |||
* Sources | |||
** [https://www.dropbox.com/scl/fi/oekkk9ts0pnjyiqaezz7m/Toponomastica-Veneziana.pdf?rlkey=wfky7ht9ckxa1w1qo6c69bo98&dl=0 Tassini PDF], [https://www.dropbox.com/scl/fi/lfu8ugk25re333gca65g7/Toponomastica-Veneziana_with_pages_delim.txt?rlkey=fouht7678vs102918hn9fuxs1&dl=0 Tassini OCR] | |||
** [https://www.dropbox.com/scl/fo/netqhm40dyw046withu8q/AJO_CPupJwuLw4Zvg1JF2jc?rlkey=ldswph81gb0n9xgi5qzz1b1i8&dl=0 Guido Commerciale PDF] | |||
** [https://onlinebooks.library.upenn.edu/webbin/metabook?id=sanudodiary Sanudo PDF] | |||
<!-- | |||
*[https://conference.timemachine.eu Time Machine Conference 2018] | |||
*[https://cliowire.dhlab.epfl.ch Cliowire] | |||
*[https://www.getpostman.com API Software] | |||
*[https://gallica.bnf.fr/accueil/?mode=desktop Gallica] | |||
*[https://docs.opencv.org/3.1.0/db/d27/tutorial_py_table_of_contents_feature2d.html Feature matching tutorial] | |||
*[[Feature matching code]] | |||
*[https://www.mediawiki.org/wiki/Help:Formatting Wiki Syntax] | |||
*[https://github.com/tootsuite/documentation/blob/master/Using-the-API/API.md API documentation] | |||
*[http://fdh.epfl.ch/peergrading/pg.php peer-grading] | |||
--> | |||
==Summary== | ==Summary== | ||
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities circle of processing and interpretation, from data acquisition to new understandings. The first part of the course presents the technical pipelines for digitising, analysing and modelling written documents (printed and handwritten), maps, photographs and 3d objects and environments. The second part of the course details the principles of the most important algorithms for document | This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities circle of processing and interpretation, from data acquisition to new understandings and services. The first part of the course presents the technical pipelines for digitising, analysing and modelling written documents (printed and handwritten), maps, photographs and 3d objects and environments. The second part of the course details the principles of the most important algorithms in particular deep learning approaches (for document analysis and image generation) and knowledge modelling (semantic web, ontologies, graph databases). The third part of the course focuses on platform management from the points of view of data, users and bots. Students will practise the skills they learn by engaging in a class-wide collective project. | ||
==Plan == | ==Plan == | ||
=== Part I : Concepts === | |||
==== Week 1 : What are Digital Humanities? ==== | |||
11.09 : | |||
(2h) Welcome and Introduction to the course | |||
* FDH-0 (1h) Introduction to the course and Digital Humanities, structure of the course. Introduction to Framapad and Slido with a simple exercise. Principle of collective note talking and use in the course. State of the Digital Humanities at EPFL. | |||
12.09 : | |||
(4h) What are Digital Humanities? What is their object of study? | |||
* FDH-1-1 (1h) What Are Digital Humanities : Digital Humanities, Digital Studies, Humanities Computing and Studies about Digital Culture. Digital Humanism vs. Digital Humanities. Why digital methods tend to dissolve traditional disciplinary frontiers. A focus on practice. Translation issues. | |||
* FDH-1-2 (1h) Digital Humanities as a field : Big Data Digital Humanities vs Small Data Digital Humanities. The 3 circles. Exercise on relationship between elements in Digital Culture schema. | |||
* FDH-1-3 (2h) Big Data of the Past. Data acceleration regime. Inferred Patterns. Redocumentation. Fictional Spaces. | |||
==== Week 2 : Patrimonial Capitalism and Commons ==== | |||
18.09 : | |||
* FDH 1-4 Patrimonial Capitalism (1h) Introduction to the DH circle linking the digitisation of sources, their processing, their analysis, visualisation and the creation of societal value (insight, culture) leading ultimately to the digitisation of new sources. Presentation of some sustainable DH circles (genealogy, image banks). Patrimonial capitalism and the risk of monopolistic companies. Parallelism with the race for sequencing the Human Genome. | |||
* FDH 1-5 The Commons (1h) What are the commons ? What is the public domains ? History and evolution. Copyright overreaching. Frontal collision. Governing with the commons. | |||
19.09 : | |||
* FDH 1-6 Anatomy of a large-scale project (1h) Venice Time Machine. European Time Machine. | |||
* Venice Datasets | |||
=== Part II : Pipelines === | |||
==== Week 3: Digitisation ==== | |||
25.09 : | |||
* FDH 1-7 Venice Data presentation (Paul Guhennec) | |||
26.09 : | |||
* (2h) FDH 2-1 Introduction to the Digitization Process. Document digitization as a problem of conversion of dimensions. Digitization is logistic optimization. Alienation. Digitization on demand. FDH 2-2 Document Structure. General presentation of the pipeline. Content and Structure. Circulation. Standards. Open Annotation Data Model. Shared Canvas. IIIF. | |||
* (2h) Project presentation by prof and TA. | |||
==== Week 4: Writing Systems and Text Encoding ==== | |||
2.10 : | |||
(2h) FDH 2-3 : Writing Systems | |||
3.10 : | |||
- (2h) FDH 2-4 : Text Encoding | |||
* (2h) [[Projects]] presentations. 5' per project with max 3 slides. Write to Tristan before the course. You can find a group using the [https://annuel2.framapad.org/p/fdh framapad]. | |||
==== Week 5: Text Processing and Understanding ==== | |||
9.10 : | |||
(2h) FDH 2-5 Text Processing : Diachronic and synchronic analysis. n-grams, TF-IDF, Topic Modeling, Word Space Models and Word embeddings (2h) | |||
10.10 : | |||
(2h) FDH 2-6 Text Understanding : Close, surface, distant and machine reading, Information extraction, Named Entities, Resources, Large-Scale Projects (2h) Work on Project (2h). | |||
==== Week 6: Images ==== | |||
16.10 : | |||
(2h) FDH 2-7 : Image systems. | |||
17.10 : | |||
(2h) FDH 2-8 : Image processing (2h) Work on project. | |||
(FDH 2-9 : Image understanding not done this year) | |||
==== Week Off ==== | |||
23.10 : | |||
No course | |||
24.10 : | |||
No Course | |||
==== Week 7: Maps ==== | |||
30.10 : | |||
(2h) FDH-2-10 Map systems | |||
31.10 : | |||
(2h) FDH-2-11 Map processing (Remi Petitpierre and Beatrice Vaienti) presentations | |||
(2h) Work on project | |||
==== Week 8: 3D Models ==== | |||
06.11 : | |||
(2h) FDH-2-12: 3D Models Systems and Encoding | |||
07.11 : | |||
(2h) FDH-2-13: 3D Models Processing : Alex Rusnak Thesis | |||
(2h)Work on project | |||
=== MidTerm Presentations === | |||
13.11 : | |||
No course | |||
14.11 Midterm presentations | |||
{|class="wikitable" | |||
! style="text-align:center;"| Time | |||
! Project name | |||
|- | |||
|10:20-10:40 | |||
| Group 8 | |||
|- | |||
|10:40-11:00 | |||
| Group 9 | |||
|- | |||
|11:00-11:20 | |||
| Group 7 | |||
|- | |||
|11:20-11:40 | |||
| Group 6 | |||
|- | |||
|11:40-12:00 | |||
| Group 3 | |||
|} | |||
{|class="wikitable" | |||
! style="text-align:center;"| Time | |||
! Project name | |||
|- | |||
|13:15-13:35 | |||
| Group 2 | |||
|- | |||
|13:35-13:55 | |||
| Group 5 | |||
|- | |||
|13:55-14:15 | |||
| Group 4 | |||
|- | |||
|14:15-14:35 | |||
| Group 1 | |||
|- | |||
|14:35-14:55 | |||
| Group 10 | |||
|} | |||
=== Part III : Knowledge modelling and processing === | |||
==== Week 9 : Semantic modelling, Rule systems, simulations and parallel worlds ==== | |||
20.11 : | |||
- (1h) FDH-3-0 Summary of the concept viewed so far and introduction to part 3 | |||
- (1h) FDH-3-1 Semantic modelling. RDF, Metaknowledge | |||
21.11 : | |||
(2h) FDH 3-2 Universal Ontologies | |||
(2h) FDH 3-3 Rule systems, simulations and parallel worlds | |||
==== Week 10 : Non conceptual knowledge systems and topological data science ==== | |||
27.11 : | |||
(2h) FDH 3-4 Non conceptual knowledge systems | |||
28.11 : | |||
(2h) Work on Projects / Publication of Study Guide | |||
(2h) Work on Projects | |||
=== Part | === Part IV : Platforms === | ||
==== Week 12 : Data, User and Bot Management ==== | |||
4.12 : | |||
(2h) Study Guide Discussion | |||
5.12 : | |||
(2h) Work on Project | |||
(2h) Work on Project | |||
=== | ==== Course Exam and Project work ==== | ||
11.12 In class exam | |||
12.12 Work on project | |||
==== Final Week : Project Presentation ==== | |||
18.12 | |||
-- Due: GitHub repository (10%) | |||
-- Due: Report writing (40%) | |||
19.12 | |||
(4h) Final project presentation (20%) | |||
== | {|class="wikitable" | ||
! style="text-align:center;"| Time | |||
! Project Name | |||
|- | |||
| 10:15 - 10:40 | |||
| Group 1 | |||
|- | |||
| 10:40 - 11:05 | |||
| Group 2 | |||
|- | |||
| 11:05 - 11:30 | |||
| Group 3 | |||
|- | |||
| 11:30 - 11:55 | |||
| Group 4 | |||
|- | |||
| 11:55 - 12:20 | |||
| Group 5 | |||
|} | |||
== | {|class="wikitable" | ||
! style="text-align:center;"| Time | |||
! Project Name | |||
|- | |||
| 1:15 - 1:40 | |||
| Group 6 | |||
|- | |||
| 1:40 - 2:05 | |||
| Group 7 | |||
|- | |||
| 2:05 - 2:30 | |||
| Group 8 | |||
|- | |||
| 2:30 - 2:55 | |||
| Group 9 | |||
|- | |||
| 2:55 - 3:20 | |||
| Group 10 | |||
|} | |||
== Resources == | |||
*[https://gallica.bnf.fr/accueil/?mode=desktop Gallica] | |||
*[https://docs.opencv.org/3.1.0/db/d27/tutorial_py_table_of_contents_feature2d.html Feature matching tutorial] | |||
*[[Feature matching code]] | |||
*[https://www.mediawiki.org/wiki/Help:Formatting Wiki Syntax] | |||
*[https://annuel2.framapad.org/p/r.664b6addb1d73a5242943f306814e898 Introduction to Rhino and Grasshopper] | |||
==Assessment and Notation grid == | |||
* (Group work) 2 oral presentations (30%) | |||
** 1 midterm presentation of the project (10%) | |||
** 1 final discussing the project result (20%) | |||
* (Group work) Written deliverables (Wiki writing) (20%) | |||
* (Group work) Quality of the project (30%) | |||
* (Individual work) Exam on Course Content (20%) | |||
=== | === 2 collective oral presentations (30%) === | ||
( | ==== Midterm presenting the project planning (10%) ==== | ||
10' max presentation + 5' questions | |||
Notation grid : | |||
*The presentation contains a planning (4) | |||
* + 0.5 The slides are clear and well presented | |||
* + 0.5 The oral presentation is dynamic and fluid | |||
* + 0.5 The planning is realistic. | |||
* + 0.5 The students answer well to the questions | |||
==== Final discussing the project result (20%) ==== | |||
10-15' for presentation and 5-10' for questions | |||
Notation grid : | |||
*The presentation presents the results of the project (4) | |||
* + 0.5 The slides are clear and well presented | |||
* + 0.5 The oral presentation is dynamic and fluid | |||
* + 0.5 The results are well discussed | |||
* + 0.5 The students answer well to the questions | |||
=== Written deliverables (Wiki writing) (20%) === | |||
* Project plan and milestones (5%) (>300 words) | |||
* Motivation and description of the deliverables (5%) (>300 words) | |||
* Detailed description of the methods (5%) (>500 words) | |||
* Quality assessment and discussion of limitations (5%) (>300 words) | |||
The indicated number of words is a minimal bound. Detailed description can in particular be extended if needed. | |||
=== Production (30%) === | |||
* Quality of the realisation 20% | |||
* Code deliverable on github 10% | |||
=== Exam on Course Content (20%) === | |||
* A series of questions on the course to ensure the core concepts are understood. |
Latest revision as of 10:48, 17 December 2024
Welcome to the wiki of the course Foundation of Digital Humanities (DH-405).
Contact
Professor: Frédéric Kaplan
Assistants: Alexander Rusnak, Tristan Karch, Tommy Bruzzese
Rooms: Wednesday (CM1110) and Thursday (BC03)
Links
- Textbook
- Slides
- Framapad
- Application Parcels of Venice (Dev version)
- Application Parcels of Venice (Stable version)
- Projects
- Sources
Summary
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities circle of processing and interpretation, from data acquisition to new understandings and services. The first part of the course presents the technical pipelines for digitising, analysing and modelling written documents (printed and handwritten), maps, photographs and 3d objects and environments. The second part of the course details the principles of the most important algorithms in particular deep learning approaches (for document analysis and image generation) and knowledge modelling (semantic web, ontologies, graph databases). The third part of the course focuses on platform management from the points of view of data, users and bots. Students will practise the skills they learn by engaging in a class-wide collective project.
Plan
Part I : Concepts
Week 1 : What are Digital Humanities?
11.09 :
(2h) Welcome and Introduction to the course
- FDH-0 (1h) Introduction to the course and Digital Humanities, structure of the course. Introduction to Framapad and Slido with a simple exercise. Principle of collective note talking and use in the course. State of the Digital Humanities at EPFL.
12.09 :
(4h) What are Digital Humanities? What is their object of study?
- FDH-1-1 (1h) What Are Digital Humanities : Digital Humanities, Digital Studies, Humanities Computing and Studies about Digital Culture. Digital Humanism vs. Digital Humanities. Why digital methods tend to dissolve traditional disciplinary frontiers. A focus on practice. Translation issues.
- FDH-1-2 (1h) Digital Humanities as a field : Big Data Digital Humanities vs Small Data Digital Humanities. The 3 circles. Exercise on relationship between elements in Digital Culture schema.
- FDH-1-3 (2h) Big Data of the Past. Data acceleration regime. Inferred Patterns. Redocumentation. Fictional Spaces.
Week 2 : Patrimonial Capitalism and Commons
18.09 :
- FDH 1-4 Patrimonial Capitalism (1h) Introduction to the DH circle linking the digitisation of sources, their processing, their analysis, visualisation and the creation of societal value (insight, culture) leading ultimately to the digitisation of new sources. Presentation of some sustainable DH circles (genealogy, image banks). Patrimonial capitalism and the risk of monopolistic companies. Parallelism with the race for sequencing the Human Genome.
- FDH 1-5 The Commons (1h) What are the commons ? What is the public domains ? History and evolution. Copyright overreaching. Frontal collision. Governing with the commons.
19.09 :
- FDH 1-6 Anatomy of a large-scale project (1h) Venice Time Machine. European Time Machine.
- Venice Datasets
Part II : Pipelines
Week 3: Digitisation
25.09 :
- FDH 1-7 Venice Data presentation (Paul Guhennec)
26.09 :
- (2h) FDH 2-1 Introduction to the Digitization Process. Document digitization as a problem of conversion of dimensions. Digitization is logistic optimization. Alienation. Digitization on demand. FDH 2-2 Document Structure. General presentation of the pipeline. Content and Structure. Circulation. Standards. Open Annotation Data Model. Shared Canvas. IIIF.
- (2h) Project presentation by prof and TA.
Week 4: Writing Systems and Text Encoding
2.10 :
(2h) FDH 2-3 : Writing Systems
3.10 :
- (2h) FDH 2-4 : Text Encoding
- (2h) Projects presentations. 5' per project with max 3 slides. Write to Tristan before the course. You can find a group using the framapad.
Week 5: Text Processing and Understanding
9.10 :
(2h) FDH 2-5 Text Processing : Diachronic and synchronic analysis. n-grams, TF-IDF, Topic Modeling, Word Space Models and Word embeddings (2h)
10.10 :
(2h) FDH 2-6 Text Understanding : Close, surface, distant and machine reading, Information extraction, Named Entities, Resources, Large-Scale Projects (2h) Work on Project (2h).
Week 6: Images
16.10 :
(2h) FDH 2-7 : Image systems.
17.10 :
(2h) FDH 2-8 : Image processing (2h) Work on project.
(FDH 2-9 : Image understanding not done this year)
Week Off
23.10 :
No course
24.10 :
No Course
Week 7: Maps
30.10 :
(2h) FDH-2-10 Map systems
31.10 :
(2h) FDH-2-11 Map processing (Remi Petitpierre and Beatrice Vaienti) presentations (2h) Work on project
Week 8: 3D Models
06.11 :
(2h) FDH-2-12: 3D Models Systems and Encoding 07.11 :
(2h) FDH-2-13: 3D Models Processing : Alex Rusnak Thesis
(2h)Work on project
MidTerm Presentations
13.11 :
No course
14.11 Midterm presentations
Time | Project name |
---|---|
10:20-10:40 | Group 8 |
10:40-11:00 | Group 9 |
11:00-11:20 | Group 7 |
11:20-11:40 | Group 6 |
11:40-12:00 | Group 3 |
Time | Project name |
---|---|
13:15-13:35 | Group 2 |
13:35-13:55 | Group 5 |
13:55-14:15 | Group 4 |
14:15-14:35 | Group 1 |
14:35-14:55 | Group 10 |
Part III : Knowledge modelling and processing
Week 9 : Semantic modelling, Rule systems, simulations and parallel worlds
20.11 :
- (1h) FDH-3-0 Summary of the concept viewed so far and introduction to part 3
- (1h) FDH-3-1 Semantic modelling. RDF, Metaknowledge
21.11 :
(2h) FDH 3-2 Universal Ontologies
(2h) FDH 3-3 Rule systems, simulations and parallel worlds
Week 10 : Non conceptual knowledge systems and topological data science
27.11 :
(2h) FDH 3-4 Non conceptual knowledge systems
28.11 :
(2h) Work on Projects / Publication of Study Guide (2h) Work on Projects
Part IV : Platforms
Week 12 : Data, User and Bot Management
4.12 :
(2h) Study Guide Discussion
5.12 :
(2h) Work on Project
(2h) Work on Project
Course Exam and Project work
11.12 In class exam
12.12 Work on project
Final Week : Project Presentation
18.12
-- Due: GitHub repository (10%)
-- Due: Report writing (40%)
19.12
(4h) Final project presentation (20%)
Time | Project Name |
---|---|
10:15 - 10:40 | Group 1 |
10:40 - 11:05 | Group 2 |
11:05 - 11:30 | Group 3 |
11:30 - 11:55 | Group 4 |
11:55 - 12:20 | Group 5 |
Time | Project Name |
---|---|
1:15 - 1:40 | Group 6 |
1:40 - 2:05 | Group 7 |
2:05 - 2:30 | Group 8 |
2:30 - 2:55 | Group 9 |
2:55 - 3:20 | Group 10 |
Resources
- Gallica
- Feature matching tutorial
- Feature matching code
- Wiki Syntax
- Introduction to Rhino and Grasshopper
Assessment and Notation grid
- (Group work) 2 oral presentations (30%)
- 1 midterm presentation of the project (10%)
- 1 final discussing the project result (20%)
- (Group work) Written deliverables (Wiki writing) (20%)
- (Group work) Quality of the project (30%)
- (Individual work) Exam on Course Content (20%)
2 collective oral presentations (30%)
Midterm presenting the project planning (10%)
10' max presentation + 5' questions
Notation grid :
- The presentation contains a planning (4)
- + 0.5 The slides are clear and well presented
- + 0.5 The oral presentation is dynamic and fluid
- + 0.5 The planning is realistic.
- + 0.5 The students answer well to the questions
Final discussing the project result (20%)
10-15' for presentation and 5-10' for questions
Notation grid :
- The presentation presents the results of the project (4)
- + 0.5 The slides are clear and well presented
- + 0.5 The oral presentation is dynamic and fluid
- + 0.5 The results are well discussed
- + 0.5 The students answer well to the questions
Written deliverables (Wiki writing) (20%)
- Project plan and milestones (5%) (>300 words)
- Motivation and description of the deliverables (5%) (>300 words)
- Detailed description of the methods (5%) (>500 words)
- Quality assessment and discussion of limitations (5%) (>300 words)
The indicated number of words is a minimal bound. Detailed description can in particular be extended if needed.
Production (30%)
- Quality of the realisation 20%
- Code deliverable on github 10%
Exam on Course Content (20%)
- A series of questions on the course to ensure the core concepts are understood.