Opera Rolandi archive: Difference between revisions
Jump to navigation
Jump to search
Line 34: | Line 34: | ||
|} | |} | ||
===Step 1=== | |||
* Train model on diverse random images of Rolandi’s libretti collection (better for generalization aspects) | |||
* Test model on diverse random images of Rolandi’s libretti collection | |||
* Test on a single chosen libretto: | |||
** If bad results, train the model on more images coming from the libretto | |||
** If still bad results (and ok with the planning), try to help the model by pre-processing the images beforehand : i.e. black and white images (filter that accentuates shades of black) | |||
* a well-formatted and not too damaged one (to be able to do step 2) | |||
===Step 2=== | |||
===Step 3=== | |||
===Step 4=== | |||
== Resources == | == Resources == |
Revision as of 09:37, 14 November 2020
Abstract
The Fondazione Giorgio Cini has digitized 36000 pages from Ulderico Rolandi's opera libretti collection. This collection contains contemporary works of 17th- and 18th-century composers. These opera libretti have a diverse content, which offered us a large amount of possibilities for analysis.
This project chose to concentrate on a way to illustrate the characters’ interactions in the Rolandi's libretti collection through network visualization. We also highlighted the importance of each character in the libretto they figure in. To achieve this, we retrieved important information using Deep Learning models and OCR. We started from a subset of Rolandi’s libretti collection and generalized this algorithm for all Rolandi’s libretti collection.
Planning
Week | To do |
---|---|
12.11. (week 9) | Step 1: Segmentation model training, fine tuning & testing |
19.11. (week 10) | Step 2: Information extraction & cleaning |
26.11. (week 11) | Finishing Step 2 |
03.12. (week 12) | Step 3: Information storing & network visualization |
10.12. (week 13) | Finishing Step 3 and Finalize Report and Wikipage (Step 4: Generalization) |
17.12. (week 14) | Final Presentation |
Step 1
- Train model on diverse random images of Rolandi’s libretti collection (better for generalization aspects)
- Test model on diverse random images of Rolandi’s libretti collection
- Test on a single chosen libretto:
- If bad results, train the model on more images coming from the libretto
- If still bad results (and ok with the planning), try to help the model by pre-processing the images beforehand : i.e. black and white images (filter that accentuates shades of black)
- a well-formatted and not too damaged one (to be able to do step 2)