Rolandi Librettos

From FDHwiki
Revision as of 13:21, 20 November 2020 by Aurel.mader (talk | contribs)
Jump to navigation Jump to search

Introduction

The Fondo Ulderico Rolandi is one of the greatest collections of librettos (text booklet of an opera) in the world. This collection of librettos which is in the possession of the Fondazione Cini consist of around 32’000 thousand librettos, spanning a time period from the 16th to the 20th century. This collection is being digitized and made available to the public in the online archives of the Fondazione Cini. Currently 1'110 librettos are digitized and accessible.

Project Abstract

The Rolandi Librettos can be considered as a collection of many unstructured documents, where each document describes an opera performance. Each document however contains structured entity information about place, time and people (e.g.: composer, actors) who were involved in this opera. In our project we want to extract as much entity information about the operas as possible. This includes information as the title of the opera, when and in which city it was performed, who was the composer, etc. By extracting the entity information and linking it to internal and external entities, it is possible to construct one comprehensive data set which describes the Rolandi Collection. The linking of information to external entities, would allow us to connect our data set to the real world. This would for example include linking every city name to a real place and assigning it geographical coordinates (longitude and latitude). Constructing links in the data set as such, would allow us for example to trace popular operas which where played several times in different places or famous directors which directed many operas in different places. In a last step we want to construct one comprehensive end product which represents the data set as a whole. Thus we want to visualization the distribution of the Rolandi Librettos in space and time.


Planning

The draft of the project and the tasks for each week are assigned below:

Weekly working plan
Timeframe Task Completion
Week 4
07.10 Evaluating which APIs to use (IIIF)
Write a scraper to scrape IIIF manifests from the Libretto website
Week 5
14.10 Processing of images: apply Tessaract OCR
Extraction of dates and cleaned the dataset to create initial DataFrame
Week 6
21.10 Design and develop initial structure for the visualization (using dates data)
Running a sanity check on the initial DataFrame by hand
Matching list of cities extracted from OCR using search techniques
Week 7
28.10 Remove irrelevant backgrounds of images
Extract age and gender from images
Design data model
Extract tags, names, birth and death years out of metadata
Week 8
04.11 Get coordinates for each city and translation of city names
Extracted additional metadata (opera title, maestro) from the title of Libretto
Setting up map and slider in the visualization and order by year
Week 9
11.11 Adding metadata information in visualization by having information pane
Checking in with the Cini Foundation
Preparing the Wiki outline and the midterm presentation
Week 10
18.11 Compiling a list of musical theatres ⬜️
Getting better recall and precision on the city information
Identifying composers and getting a performer's information
Extracting corresponding information for the MediaWiki API for entities (theatres etc.)
Week 11
25.11 Integrate visualization's zoom functionality with the data pipeline to see intra-level info ⬜️
Linking similar entities together (which directors performed the same play in different cities?)
Week 12
02.12 Serving the website and do performance metrics for our data analysis ⬜️
Communicate and get feedback from the Cini Foundation
Continuously working on the report and the presentation
Week 13
09.12 Finishing off the project website and work, do a presentation on our results ⬜️


Just to show how to add images
Just to show how to add images

Historical Source

Methodology

Collecting data

Metadata extraction

Visualization

Quality assessment

Overall pipeline

Basic features extraction

Efficiency of algorithms

Results

Website

Links